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a b s t r a c t

This work is devoted to the design of multi-dimensional finite volume schemes for solving
transport equations on unstructured grids. In the framework of MUSCL vertex-based meth-
ods we construct numerical fluxes such that the local maximum property is guaranteed
under an explicit Courant–Friedrichs–Levy condition. The method can be naturally com-
pleted by adaptive local mesh refinements and it turns out that the mesh generation is less
constrained than when using the competitive cell-centered methods. We illustrate the
effectiveness of the scheme by simulating variable density incompressible viscous flows.
Numerical simulations underline the theoretical predictions and succeed in the computa-
tion of high density ratio phenomena such as a water bubble falling in air.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We are concerned with the numerical simulation of the advection of a scalar quantity: given a velocity field u 2 RN ,
depending on the time and space variables ðt;xÞ 2 Rþ � RN , we wish to compute the solution qðt;xÞ 2 R of
@tqþ divxðquÞ ¼ 0: ð1Þ
To this end, we shall use finite volume methods which are quite natural to this problem since they are based on the con-
servation relation
d
dt

Z
C
qðt;xÞdx ¼ �

Z
@C

qu � nðxÞdrðxÞ
which holds for any subdomain C. Therefore, the method is based on a suitable definition of the fluxes on the interfaces of the
control volumes C that realize a tessellation of the whole computational domain. Anticipating on precise definitions, we dis-
tinguish among these methods between the vertex-based methods where variables are stored at the mesh vertices and cell-
centered methods where variables are stored at the centroids of the cells. For a given mesh, there are many more degrees of
freedom for a cell-center scheme than with a vertex-based scheme, but the structure of the discrete operators is more sparse.
In particular, for a given number of unknowns, a fixed vertex has more neighbors than a fixed cell, which could lead to expect
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more accuracy with a vertex-based approach. However, while it might be natural to define the most effective discretization
as the one which provides the highest accuracy at the lowest cost, the comparison between the two possible discretizations
remains difficult and there is no conclusive answer. This is due to the difficulty in defining an appropriate notion of ‘‘equiv-
alent mesh”. We refer to [32] for an attempt in this direction, considering transonic flows. We also refer to [34] for a com-
plete commented overview of the debate on the pros and cons of these methods. In this work, we find some advantages in
working in the vertex-based framework. Our first motivation comes from the development of hybrid finite volume/finite ele-
ment schemes for the simulation of variable density viscous flows as introduced in [11], for which it is convenient to use a
vertex-based approximation of the density since it naturally defines on cells a P1 approximation of the density to be used for
treating the momentum equation. Furthermore, for such simulations, due to the coupling between the density and the veloc-
ity field, it is crucial to use a scheme for (1) that preserves the maximum principle. This is the main issue devised in this
paper. As it will be shown below, it turns out that L1 stability on unstructured meshes can be justified for vertex-based
meshes under less restrictive geometric assumptions than for cell-center methods.

The problem we address faces two difficulties:

� Firstly, as it is well-known numerical approximation of (1) might generate diffusion and smooth out steep gradients.
When dealing with multi-dimensional problems, as pointed in [23,22], the origin of numerical diffusion is twofold. Addi-
tionally to the usual diffusion in the direction of the velocity field, which already occurs in dimension one, diffusion phe-
nomena also arise in transverse directions when the mesh is not aligned with the velocity.
� Secondly, we wish to work with unstructured grids. However, removing the Cartesian geometry of the mesh induces a

loss of consistency: order one methods do not satisfy order one estimates on unstructured meshes. Fine analysis of this
phenomenon can be found in [20,21,36,35,18].

The necessity to consider unstructured meshes can be motivated as follows. On the one hand, removing structure con-
straints make easier the tiling of complex geometries. On the other hand, bearing in mind complex and multi-physics prob-
lems, we realize that meshing uniformly on the finest scales is definitely non-affordable. Then, we wish to couple the scheme
with adaptive mesh refinements strategies which make the grids finer close to large gradients. The use of automated mesh
generation produces unstructured grids. However, it might be difficult when using such refinements methods to respect the
strong geometrical constraints which usually appear in the proof of stability statements. Finally, we address as a require-
ment for the scheme to preserve the local maximum principle satisfied by the solutions of (1). The motivation in preserving
L1 estimates and the maximum principle is twofold. First of all the conservation of extrema can be considered as a funda-
mental physical property of the equation that a numerical scheme must reproduce (a mass or a temperature density should
be positive). This is particularly crucial if one thinks of the transport equation as part of a more complex and coupled prob-
lem where the violation of the maximum principle might lead to definition troubles. Second of all spurious oscillations can
lead, especially in coupled systems where q becomes a data for determining the evolution of the velocity, to severe stability
issues. We shall illustrate all these aspects with the simulation of variable density incompressible viscous flows, by using the
hybrid finite volume/finite element scheme introduced in [11]. The difficulty of such problems is embodied into two dimen-
sionless parameters: the Reynolds number and the ratio between the densities of the heavy and the light fluids. The larger
these numbers, the more difficult the problem. The method we discuss is well-suited to be used with the scheme of [11] and
we shall show that we can indeed consider high density ratios.

Clearly, a simple first order upwind method cannot produce satisfactory results and, anyway, useful engineering calcu-
lations generally require second-order spatial accuracy. Hence, a possible avenue consists in increasing the order of approx-
imation by constructing piecewise linear approximations of the unknown. However, high order methods might have a bad
behavior when the solution presents strong variations. Motivated by the BV estimate satisfied by the solutions of scalar con-
servation laws, limiters can be defined in order to restore the TVD property of the scheme [29] and so to prevent the solution
from non-physical oscillations near the discontinuities of the solution. It avoids under and overshoots phenomena and it can
lead in particular to a maximum principle on the discrete solution. This is the spirit of Monotone Upstream Scheme for Con-
servation Law (MUSCL) methods as introduced by Van Leer with the one-dimensional analysis of the resolution of hyperbolic
conservation laws [44]. Since then, the MUSCL technique has become a standard, used in many academic and industrial
codes, see e.g. [34]. A large bibliography database is devoted to the development of several one-dimensional limiters, and
the study of the corresponding schemes convergence [39,43,45,37,46]. Unfortunately, the generalization of this approach
for multi-dimensional problems is not straightforward at all. A first obstruction comes from the negative result of [27] which
establishes that any multi-dimensional TVD scheme is at most first-order accurate.1 Next, the way to determine the gradients
involved in the reconstruction of the solution at the interfaces of a given control volume, having in mind to satisfy the maximum
principle, is not a so easy task. Alternative approaches have been proposed. The Essentially Non Oscillatory scheme, see e.g.
1 The precise result we have in mind states that any two-dimensional FV scheme of the form

unþ1
i;j ¼ un

i;j �
Dt
jTijj
ðgn

iþ1=2;j � gn
i�1=2;j þ hn

i;jþ1=2 � hn
i;j�1=2Þ

with Lipschitz-continuous numerical fluxes gi+1/2,j = g(ui�p,j�q,. . .,ui+r,j+s), hi+1/2,j = h(ui�p,j�q,. . .,ui+r,j+s), which verifies TV(un+1) 6 TV(un) is at most first-order

accurate, see e.g. Th. 3.7 in [4].
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[41,17], is particularly adapted to Cartesian grids. It uses a large stencil and therefore it is not so convenient in a local mesh
refinement context. Subject to recent developments, a promising approach is the Residual Distributed Method as discussed
in [2]. It is also worth mentioning the work [22] which adopts a different viewpoint since, contrarily to the MUSCL method,
the approximation remains discontinuous over the cells. In [22] the direction of the velocity is privileged for the construction
of the fluxes which furthermore is based on anti-dissipative strategies. The method is shown to be L1 stable under a CFL con-
dition comparable to the one that will be discussed below.

The first attempts to develop efficient MUSCL methods on multi-dimensional unstructured grids were concerned with the
design of slope limiting procedures for cell-centered schemes dealing with grids made of triangles by the use of ‘‘monoslope”
limiters [5,24,33,6]. It consists in defining on each control volume a certain gradient, which is used to generate a linear recon-
struction of the solution at the interfaces of this control volume, and then to limit it in order to ensure the local maximum
principle. Monoslope limiters for vertex-based methods have been also proposed, see e.g. [19], with applications in aerody-
namics, but the most refined limiters strategies have been designed for cell-centered schemes. An elaborate improvement
which takes more into account the multi-dimensional aspects of the problem is due to [30]. Very recently, a ‘‘multislope”
variant has been proposed first for two-dimensional problems [9] and then extended to dimension three [16]. In these meth-
ods, the numerical gradient depends not only on the control volume under consideration, but also on the interfaces of the
control volume. In the same vein, it is also possible to design a scheme which does not necessarily reduce to order one near
extrema. In counterparts the scheme does not always satisfy a maximum principle any more. We refer to [13] which pro-
poses a new reconstruction inspired by ENO. However, the stability investigated in [13] relies on geometrical constraint re-
lated to the finite speed of propagation and the L1 stability is not obtained. Nevertheless, this can be enough to obtain stable
computations according to the physical problem under consideration and the numerical experiments are indeed very con-
vincing. Note also that proving the L1 stability of the multislope cell-centered scheme needs geometrical constraints on the
mesh, which can be difficult to verify by automated generation, especially in dimension three, see [3] where another variant
is proposed from [9,16]. In the present paper, strongly inspired by [15], a multi-dimensional flux limiter strategy is consid-
ered for the resolution of (1). However, by contrast to the mentioned references, we deal with vertex-based schemes instead
of cell-centered schemes. In this context, it turns out that we are able to propose a gradient reconstruction for which the L1

stability can be justified provided a (explicit) Courant–Friedrichs–Levy condition is fulfilled. The proof works for divergence
free velocity field, not necessarily constant. Furthermore, the stability is obtained without the restrictive geometrical
requirements needed for the cell-centered methods. Numerical tests show the robustness and the accuracy of the numerical
method we derive. In particular this treatment of the mass conservation equation allows to consider high density ratio when
simulating multicomponent incompressible viscous flows.

The schedule of the paper is the following. In Section 2, we explain our motivation that comes from the simulation of
incompressible Navier–Stokes equations with inhomogeneous density. We briefly recall the governing equations as well
as the numerical scheme introduced in [11]. Then, we detail the vertex-based finite volume scheme we propose for solving
(1), with a multislope gradient reconstruction. In Section 3, we establish the maximum principle property for the scheme
under an explicitly given CFL condition. Finally, Section 4 is devoted to numerical results and we make comparisons with
other simulations in recent bibliography. Three classical benchmark test cases are addressed: the translated field, the rota-
tional field and the falling droplet.
2. Motivation and description of the numerical scheme

2.1. Density dependent Navier–Stokes equations and time discretization

Our motivation comes from the simulation of the variable density incompressible Navier–Stokes system. From now on, X
stands for an open bounded polygonal subset on R2. We are interested in the following PDEs system
@tqþ divxðquÞ ¼ 0; ð2Þ
@tðquÞ þ Divxðqu� uÞ þ rxp� lDxu ¼ f; ð3Þ
divxu ¼ 0: ð4Þ
Here, q(t,x) P 0 represents the density, pðt;xÞ 2 R the pressure and uðt;xÞ 2 R2 the velocity field of the fluid. The descrip-
tion of the external force is embodied into the right hand side f(t,x) of (3) and l > 0 stands for the (dynamic) viscosity. The
unknowns depend on time t P 0 and position x 2 X � R2. Given vector fields u and v we set divxðuÞ ¼

P2
i¼1@xi

ui, and u � v is
the 2 � 2 matrix with components uivj; given a matrix valued function A we denote DivxA the vector having componentsP2

j¼1@xj
Aij.

There are several difficulties for solving numerically the system. To start with, the divergence free constraint and the
underlying definition of the pressure have to be considered carefully. In particular, it yields some constraints between the
spaces of approximation for the velocity and the pressure (the so–called ‘‘inf–sup condition”) and many finite element meth-
ods have been designed for the treatment of the space homogeneous density incompressible Navier–Stokes equations. How-
ever, dealing with inhomogeneous densities leads to new numerical issues in order to treat the coupling with accuracy and
the standard finite elements methods cannot be applied directly. The coupling also yields specific stability and conditioning
questions. Classical illustrations consist in simulating the formation of Rayleigh–Taylor instabilities and the motion of
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droplets or bubbles in a fluid. Clearly, increasing the ratio of the extreme densities – that can be associated to the so-called
Atwood number – makes the problem more challenging for numerics. We refer for instance to [7,28,11] for a further descrip-
tion of these difficulties and discussion of techniques to treat the problem. In [11], we have introduced an original hybrid
finite volume/finite element scheme to compute the solution of (2)–(4).

Let us denote Dt the time step and tn = nDt, n P 0. Let us assume that the numerical solution at time tn, namely (qn,un,pn),
is known on the computational domain. The numerical scheme is based on a time splitting of the system (2)–(4) known as
the ‘‘Strang splitting” [42]:

1. An intermediate density field, qnþ1
2, is computed by solving on the time interval ðnDt; ðnþ 1

2ÞDtÞ the transport equation
@tqnþ1
2 þ divxðqnþ1

2unÞ ¼ 0; ð5Þ
with suitable boundary conditions on qnþ1
2, using a vertex-based finite volume method.

2. The new velocity and pressure fields, un+1 and pn+1, are computed by the resolution on the time interval (nDt, (n + 1)Dt) of
the system
qnþ1
2 @tunþ1 þ unþ1 � rxunþ1
� �

þrxpnþ1 � lDxunþ1 ¼ fnþ1
; ð6Þ

divxunþ1 ¼ 0; ð7Þ
completed by the specification of boundary conditions on un+1, using a finite element method.
3. Finally, the new density field, qn+1, is computed by solving on the time interval ððnþ 1

2ÞDt; ðnþ 1ÞDtÞ the transport
equation
@tqnþ1 þ divxðqnþ1unþ1Þ ¼ 0; ð8Þ
with suitable boundary conditions on qn+1, using once again the vertex-based finite volume method.

Then we go back to the first step (using n + 1 instead of n) to compute the solution at the following time step. A key point
of the method introduced in [11] is the ‘‘compatibility relation”, which has to be carefully fulfilled so that the discrete diver-
gence free constraint is ensured both for the finite element and the finite volume interpretations. We will not come back on
this point here neither on the description of the global numerical scheme. We only consider that we have to solve (5) and (8),
having at hand a given discrete velocity field u. In particular, in view of the application we have in mind, it turns out that

� it is natural to keep track of the interfaces and to appeal to mesh refinements strategies so that a fine grid is used only in
regions of steep density gradients and a coarse grid elsewhere.
� as the density ratio increases (considering air and water this ratio is of order of 1000) the simulation becomes highly sen-

sitive to violation of the maximum principle which might lead to severe numerical instabilities for the whole system.

2.2. Space discretization and notations

Let oX be the Lipschitz boundary of X, and n(x) the outer unit normal vector at x 2 oX. Let T h be a partition of X (named
primal mesh) composed of conforming and isotropic triangles Tk, with k 2 [1,K]. For each element Tk of the mesh, we denote
Bk the barycenter of the triangle and jTkj the area of Tk. Moreover, we denote by Ai, i 2 [1, I], the vertices of T h. For a given node
Ai, let VðiÞ be the set of the indices of the neighboring nodes Aj which are vertices of the elements Tk sharing the common
point Ai. For a given triangle Ti, letWðiÞ be the set of the indices of the neighboring triangles Tj sharing at least one node with
Ti. We also denote by Aij the middle point of the edge [AiAj]. For each vertex Ai, we associate a polygon denoted by Ci, which
defines a second partition of X (named dual mesh). Here, this polygon Ci is defined by joining the barycenters Bk of the neigh-
boring elements Tk which share the node Ai with the middle points Aij of the edges [AiAj], for j 2 VðiÞ. This construction is
referred to as the ‘‘CV1” control volume (see Fig. 1), and we will see later that a variant can be proposed. We denote C�ij (resp.
Cþij ) the segment [Bj�1Aij] (resp. [AijBj]) (here we visit the neighboring triangles around Ai in the counterclockwise direction),
A�ij (resp. Aþij ) the middle of C�ij (resp. Cþij ) and n�ij (resp. nþij ) the unit outward normal to Ci along C�ij (resp. Cþij ). Let jCij stand for
the area of Ci and jC�ij j (resp. jCþij j) for the length of C�ij (resp. Cþij ). Then, the boundary of Ci splits into several segments C�ij and
Cþij and we write @Ci ¼

S
j2VðiÞðC

�
ij [ Cþij Þ.

We introduce now the following quantity
CT h
¼max

Tj2T h

max
k2WðjÞ

dTj

hTk

; ð9Þ
where dTj
is the diameter of the circumscribed circle to Tj and hTk

the smallest height in Tk. The constant CT h
measures the

mesh size variation from an element to a neighboring one and characterizes the mesh regularity. Let us note that it does not
exactly correspond to the usual elementwise aspect ratio in the Ciarlet sense [14], but it is of the same order for usual iso-
tropic meshes like those used in this paper. The constant CT h

is clearly bounded from below by 1; the smaller the value of



Fig. 1. Construction of the dual mesh: control volume CV1 around the node Ai.
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CT h
, the more regular the mesh. For example, the particular mesh in Fig. 2 verifies CT h

¼ 2. In practice, standard isotropic
mesh generators provide meshes with controlled values of this parameter.

2.3. Finite volume scheme

As said above, let us assume that qn, the numerical solution at time tn, is known on the computational domain. The new
density qn+1 is computed by solving on the time interval (nDt, (n + 1)Dt) the transport equation
@tqnþ1 þ divxðqnþ1uÞ ¼ 0: ð10Þ
Here and below, the velocity field is a given function u : R� R2 ! R2 which fulfills the divergence free condition. We will
make more precise this requirement at the discrete level later on. The computation of the solution is performed using a usual
vertex-based finite volume (FV) scheme which provides the approximated value qnþ1

i ; i 2 ½1;I�:
qnþ1
i 	 1

jCij

Z
Ci

qðtnþ1;xÞdx:
Let us remark that the vertex-based choice of the FV method (instead of the cell-centered one) allows to write a P1 La-
grange interpolation of the density if needed, by using this constant value qnþ1

i on Ci as the value of qn+1 at node Ai (see [11]).
Then, qnþ1

i ; i 2 ½1; I� is computed by using the formula
Fig. 2. A particular mesh.
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qnþ1
i ¼ qn

i �
Dt
jCij

X
j2VðiÞ

jCþij jG
þ
ij ððqþij Þ

n
; ðqþji Þ

nÞ þ jC�ij jG
�
ij ððq�ij Þ

n
; ðq�ji Þ

nÞ
� �

; ð11Þ
where the right hand side of (11) is evaluated using an upstream flux:
G
ij ðq1;q2Þ ¼
q1u
ij � n
ij if u
ij � n
ij P 0;

q2u
ij � n
ij if u
ij � n
ij < 0:

(
ð12Þ
This is a natural choice having in mind a further MUSCL treatment to reach higher accuracy. With this choice, the mono-
tone property of the numerical flux is ensured, namely:
@G
ij
@q1
ðq1;q2ÞP 0 and

@G
ij
@q2
ðq1;q2Þ 6 0: ð13Þ
In (12), uþij (resp. u�ij ) stands for the value of the velocity field at the point Aþij (resp. A�ij ). In fact, bearing in mind multi-
physics coupled models, the velocity field is also known on a discrete way, and uþij is rather an approximation of the contin-
uous velocity associated to the point Aþij . (Coming back to [11], it is defined from the finite element discretization of the
momentum equation of the Navier–Stokes system.) Therefore, the discrete velocity field is defined so that it preserves the
continuous divergence free property at the discrete level: for any given constant density qc on the whole domain, and what-
ever i 2 [1, I],
X

j2VðiÞ
jCþij jG

þ
ij ðqc;qcÞ þ jC

�
ij jG

�
ij ðqc;qcÞ

� �
¼ 0 ð14Þ
holds. The consistency property (14) is a key point of the further analysis. A first order accuracy in space is obtained by
choosing, as interface reconstruction involved in (11), the value ðqþij Þ

n ¼ ðq�ij Þ
n ¼ qn

i for all i 2 [1, I] and j 2 VðiÞ. It is well-
established that in this case the L1 stability is satisfied under an appropriate CFL condition. The second-order accuracy in
space can be reached by using a MUSCL technique [44,45], with a reconstruction operator which gives new values q
ij and
q
ji on both sides of C
ij using the values qn

i , qn
j and qn

k for some k 2 VðiÞ [ VðjÞ. In this work, we aim at developing such a
reconstruction strategy with the goal of preserving the local maximum property:
8i 2 ½1; I�; min
j2VðiÞ
ðqn

i ;q
n
j Þ 6 qnþ1

i 6 max
j2VðiÞ
ðqn

i ;q
n
j Þ; ð15Þ
in a vertex-based finite-volume context. For further considerations it is convenient to introduce the quantity:
kuki;1 ¼ max
j2VðiÞ

maxðkuþij kl2ðR2Þ; ku
�
ij kl2ðR2ÞÞ: ð16Þ
2.4. Second-order reconstruction

2.4.1. Monoslope procedure
A classical approach to reach the second-order accuracy is based on a piecewise linear approximation of the density de-

fined using a gradient vector of the unknown. The upstream or downstream gradient vectors can so be defined on each ele-
ment Tk or on each node Ai of T h. Usually, ðrqÞjTk

; k 2 ½1;K�, is the gradient vector computed from the three values of qn in
the triangle Tk, rqi ¼ ð

P
k2ZðiÞjTkjðrqÞjTk

Þ=ð
P

k2ZðiÞjTkjÞ; i 2 ½1; I�, with ZðiÞ the set of the indices of the triangles Tk sharing Ai

[25,8]. Using this approach on unstructured meshes, by considering a one-dimensional problem independently for each
interface reconstruction, it is easy to see that the maximum principle will not be respected. To illustrate it, let us consider
the following example where a density field is defined on the mesh given in Fig. 2: qn is the density value at node A and qn

i at
node Ai, 1 6 i 6 6 (see full circles). The density is identically equal to 1 (qn ¼ qn

2 ¼ qn
3 ¼ qn

4 ¼ qn
5 ¼ qn

6 ¼ 1), except at node A1

where qn
1 ¼ 1þ e, e > 0. We are interested in the new value of the density at node A after one iteration in time, namely qn+1,

using (41) (see below) which is a variant of (11) in the particular case of such a structured mesh. The velocity u is supposed
to be equal to u = (1,0)T. We use the one-dimensional reconstruction with the b-scheme, b ¼ 1

3, and the Van-Leer limiter. Thus
it is necessary to reconstruct the value of the density on each part of the interface of the control volume (see empty circles).
Using one of the usual way to proceed [8], the reconstructed value ~qn

1 of the density at interface C1 located between A and A1

is computed by:
~qn
1 ¼ qn þ 1

2
baðr1ÞDq1 þ ð1� aðr1ÞÞð1� bÞDq1

h i
;

where b ¼ 1
3 ; r1 ¼ bDq1

ð1�bÞDq1
;a is the Van-Leer flux-limiter function aðrÞ ¼ rþjrj

1þr

� �
; Dq1 is the ‘‘upstream” variation of the den-

sity, computed here using an averaged value of the density gradients in triangles surrounding the node A, and Dq1 is the
‘‘downstream” variation of the density, computed with the values of the density only at nodes A and A1. Using such a strat-
egy, we naturally arrive at:
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~qn
1 ¼ 1þ 16

63
e; ~qn

2 ¼ ~qn
3 ¼ ~qn

4 ¼ ~qn
5 ¼ ~qn

6 ¼ 1:
Consequently, a simple calculation using (41) and geometrical considerations of this particular control volume lead to:
h2

Dt
ðqnþ1 � qnÞ ¼ �32h

189
e < 0;
and neither the maximum principle nor the local extremum diminishing (LED) properties of the scheme are fulfilled since
qn+1 < 1. Such an approach can nevertheless ensure the maximum principle property in particular cases corresponding to
Cartesian meshes on which a tensorial analysis can be performed, coming back under a given CFL to the one-dimensional
framework.

A first remedy is so to consider a monoslope method, as introduced in [30,9] for the cell-centered framework. The idea of
[30] can be adapted to the vertex-based context. It would consist in the computation of a gradient operator, the vector rqi

for example, and to use only this gradient on the volume Ci in order to obtain all the reconstructed values ðqþij Þ
n (resp. ðq�ij Þ

n)
on the segments Cþij (resp. C�ij ), j 2 VðiÞ. A limiting strategy would then be applied in order to avoid the creation of new ex-
trema during the reconstruction process: it is indeed in this approach a necessary condition to ensure the maximum prin-
ciple property (see the appendix of [6] for the proof). So we would have:
q
ij ¼ qi þ airqi � AiA


ij for any j 2 VðiÞ;
where ai 2 [0,1] has to be determined not to create any new extremum at the interface. Hence, the limiting procedure can
reduce drastically the scheme locally to the order one in all the space directions around Ai, while it is only needed for one of
these directions. It constitutes a severe drawback, even for very regular solutions. Nevertheless, if this methodology is used, a
sufficient condition to obtain the maximum principle remains that the linear approximation satisfies the following conser-
vation property:
Z

Ci

qi þ airqi � AiXð ÞdX ¼ jCijqi 8i 2 ½1; I�:
It can be immediately seen that if a cell-centered FV approach automatically satisfies the conservation property, because
of the triangular geometry of the control volume, it is not the case with the vertex-based FV approach for which the control
volume is a given polygonal. This is the reason why a multislope multi-dimensional procedure is necessary in the vertex-
based context, as confirmed by numerical experiments.

2.4.2. Multislope procedure
We need to introduce a few notation, see Fig. 1. Given two points D and E in the plane, we denote (DE) the line passing

through D and E, and (DE[ is the half-line starting from E and containing D (but not E). Moreover, we define Di ¼ [Ai2Tk
Tk.

Obviously, Ci � Di. This subsection is devoted to the description of the density reconstruction ðqþij Þ
n on the interface Cþij

by a multislope strategy. Of course, a similar reconstruction will be derived for the value of ðq�ij Þ
n, as well as for the values

of ðqþji Þ
n and ðq�ji Þ

n. In order to simplify the notations, the time indices are dropped; qþij will so have to be understood as ðqþij Þ
n.

Finally, the node Ai is supposed not to belong to the boundary of X (in other words, it is an internal node). We introduce the
point Mþ

ij ¼ ðAiA
þ
ij Þ \ ½AjAjþ1�.

Definition 1. Let us define aþi;j 2 ½0;1� such that:
AiM
þ
ij ¼ aþi;jAiAj þ ð1� aþi;jÞAiAjþ1 ð17Þ
This definition, associated to a P1-Lagrange-piecewise interpretation of the density field on the primal mesh, allows to
define a density value at nodes Mþ

ij by setting:
qMþ
ij
¼ qi þ aþi;jðqj � qiÞ þ ð1� aþi;jÞðqjþ1 � qiÞ:
Now, we define the point Nþij ¼ ðAiM
þ
ij ½\@Di.

Definition 2. Let us introduce kþij 2 VðiÞ and ai;kþij
2 ½0;1� such that:
AiN
þ
ij ¼ ai;kþij

AiAkþij
þ ð1� ai;kþij

ÞAiAkþij þ1 ð18Þ

Once again, this definition allows to define a density value at nodes Nþij by setting:
qNþ
ij
¼ qi þ ai;kþij

ðqkþij
� qiÞ þ ð1� ai;kþij

Þðqkþij þ1 � qiÞ: ð19Þ
To define the interface reconstruction qþij involved in (11), we first set
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pup
ij ¼

qi�qNþ
ij

kAiN
þ
ij
k ; pdown

ij ¼
qMþ

ij
�qi

kAiM
þ
ij
k ;

rij ¼
pdown

ij

pup
ij
; pij ¼ pup

ij WðrijÞ;
where W is the flux limiter function, which is assumed to satisfy:
WðrÞ ¼ 0 if r 6 0;

WðrÞ > 0 if r > 0:

�
ð20Þ
Let us note that to reach second-order accuracy and to preserve a linear solution, we have also to impose W(1) = 1 (see Swe-
by’s diagram in [31]). Then, qþij is finally defined as:
qþij ¼ qi þ pijkAiA
þ
ij k: ð21Þ
3. Local maximum principle property

3.1. Preliminary results

Definition 3 (Convexity property). The second-order reconstruction qþij is said to be convex if there exists hþij 2 ½0;1� such
that
qþij ¼ ð1� hþij Þqi þ hþij qMþij
: ð22Þ
Definition 4 (s-limiter). Let s > 0; W is said to be a s-limiter if it satisfies the property:
8r 2 Rþ� ; WðrÞ 6 min
12
7

r; s
� �

ð23Þ
Remark 1. This definition slightly differs from the ‘‘Q-limiter” property arising in the cell-centered context [16]. For exam-
ple, instead of 12/7, a coefficient depending on the mesh regularity has to be introduced. Remark that the minmod limiter is a
s-limiter with s = 1, and that several other less-diffusive usual one-dimensional limiters can be adapted to easily become s-
limiters. For example, with s = 12/7, the modified superbee limiter is
WðrÞ ¼maxð0;minð1; srÞ;minðr; sÞÞ;
instead of the classical one, defined similarly by using s = 2. Again with s = 12/7, the modified Van-Leer limiter is (see [31]
and [16, p. 81])
WðrÞ ¼

0 ifr 6 0;
rþðs�1Þr
1þðs�1Þr if 0 6 r 6 1;

rþðs�1Þr
ðs�1Þþr if r P 1:

8>><
>>: ð24Þ
Of course, these modified limiters lie in Sweby’s region.
Lemma 1. If W is a s-limiter, then the reconstruction (21) is a convex reconstruction.
Proof 1. The proof is very similar to the one developed in [16] in the cell-centered context. Without loss of generality, let
suppose that qi 6 qMþij

, so that pdown
ij P 0. If pup

ij < 0, then the scheme degenerates to order 1 and (22) is obviously fulfilled
with hþij ¼ 0. If pup

ij P 0, (21) ensures that qþij P qi. On the other hand, since from geometrical considerations
AiA

þ
ij ¼ 7

12 AiM
þ
ij and using the fact that W is a s-limiter, we get:
pij 6
kAiM

þ
ij k

kAiA
þ
ij k

pdown
ij ;
leading directly to qþij 6 qMþij
. h

Lemma 2. There exists some coefficients wþijk P 0; k 2 VðiÞ, such that
qþij � qi ¼
X

k2VðiÞ
wþijkðqi � qkÞ ð25Þ
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holds, and furthermore, they satisfy
X
k2VðiÞ

wþijk 6
7s
12

CT h
: ð26Þ
Remark 2. This result is an adaptation of the so-called ‘‘Chainais–Hillairet condition”, see [12], developed in the cell-cen-
tered approach. But in the cell-centered framework, it relies on additional geometrical assumptions on the mesh. Adopting
a vertex-based viewpoint relaxes the geometrical constraints needed to prove such a statement.
Proof 2. Let us define:
Dqþij ¼ qþij � qi ¼ pijkAiA
þ
ij k:
If pdown
ij pup

ij 6 0, then Dqþij ¼ 0 and we can set wþijk ¼ 0. Let us discuss the case pdown
ij pup

ij > 0. By (19), we get:
Dqþij ¼ ½ai;kþij
ðqi � qkþij

Þ þ ð1� ai;kþij
Þðqi � qkþij þ1Þ�WðrijÞ

kAiA
þ
ij k

kAiN
þ
ij k
:

By a simple identification, the coefficients wþijk can obviously be derived to fulfill (25): we set
wþijk ¼

ai;kþij
WðrijÞ

kAiA
þ
ij k

kAiN
þ
ij
k if k ¼ kþij ;

ð1� ai;kþij
ÞWðrijÞ

kAiA
þ
ij k

kAiN
þ
ij
k if k ¼ kþij þ 1;

0 in any other case:

8>>>><
>>>>:
Now, in order to prove (26), we have to write
X
k2VðiÞ

wþijk ¼ WðrijÞ
kAiA

þ
ij k

kAiN
þ
ij k
¼ WðrijÞ

kAiA
þ
ij k

kAiM
þ
ij k
kAiM

þ
ij k

kAiN
þ
ij k
6

7s
12

CT h
because of (23) and (9). h
3.2. L1 stability

Theorem 1. Let W be a s-limiter. The numerical scheme (11) associated to the numerical flux (12) and the second-order
reconstruction at the interfaces described in Section 2.4.2 respects the local maximum principle under the CFL condition:
Dt 6 min
16i6I

jCij
kuki;1 2þ 7s

12 CT h

� � P
j2VðiÞ
ðjCþij j þ jC

�
ij jÞ

: ð27Þ
Proof 3. Making use of the consistency property (14), the numerical scheme (11) can be written as follows (remind that the
indices n are dropped in the right-hand side)
qnþ1
i ¼ qi �

Dt
jCij

X
j2VðiÞ
jCþij j Gþij ðqþij ;qþji Þ � Gþij ðqi;qiÞ

� �
� Dt
jCij

X
j2VðiÞ
jC�ij j G�ij ðq�ij ;q�ji Þ � G�ij ðqi;qiÞ

� �

¼ qi �
Dt
jCij

X
j2VðiÞ
jCþij j Gþij ðqi þ Dqþij ;qi þ ~Dqþij Þ � Gþij ðqi;qiÞ

� �

� Dt
jCij

X
j2VðiÞ
jC�ij j G�ij ðqi þ Dq�ij ;qi þ ~Dq�ij Þ � G�ij ðqi;qiÞ

� �
; ð28Þ
where we defined:
Dqþij ¼ qþij � qi;
~Dqþij ¼ qþji � qi;

Dq�ij ¼ q�ij � qi;
~Dq�ij ¼ q�ji � qi:
Now, by considering the functions h
 : h 2 ½0;1� ! h
ðhÞ ¼ G
ij ðqi þ hDq
ij ;qi þ h~Dq
ij Þ, and by using the finite variations the-
orem, we get the existence of 0 < f
ij < 1 such that:
qnþ1
i ¼ qi � Dt

X
j2VðiÞ
ðAþij Dqþij � Bþij ~Dqþij Þ � Dt

X
j2VðiÞ
ðA�ij Dq�ij � B�ij ~Dq�ij Þ; ð29Þ
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where we introduced (see (12) and (13))
A
ij ¼
jC
ij j
jCij

@G
ij
@q1
ðqi þ f
ij Dq
ij ;qi þ f
ij

~Dq
ij Þ;

B
ij ¼ �
jC
ij j
jCij

@G
ij
@q2
ðqi þ f
ij Dq
ij ;qi þ f
ij

~Dq
ij Þ:
Because of the definition of the monotone property of the flux (13), we clearly have A
ij P 0 and B
ij P 0. On the one hand,
Lemma 2 allows to write:
Dqþij ¼
X

k2VðiÞ
wþijkðqi � qkÞ with wþijk P 0 and

X
k2VðiÞ

wþijk 6
7s
12

CT h
;

and similarly:
Dq�ij ¼
X

k2VðiÞ
w�ijkðqi � qkÞ with w�ijk P 0 and

X
k2VðiÞ

w�ijk 6
7s
12

CT h
:

On the other hand, thanks to Lemma 1, the convex property of the reconstruction leads to:
~Dqþij ¼ hþji ðqMþji
� qjÞ þ ðqj � qiÞ ¼ hþji ðqMþji

� qiÞ þ ð1� hþji Þðqj � qiÞ:
Since Mþ
ji 2 ½AiAjþ1�, qMþ

ji
is defined by a linear interpolation between qi and qj+1. So we get:
~Dqþij ¼ hþji
kAiM

þ
ji k

kAiAjþ1k
ðqjþ1 � qiÞ þ ð1� hþji Þðqj � qiÞ: ð30Þ
By identification, we can find some coefficients ~wþijk such that:
~Dqþij ¼
X

k2VðiÞ

~wþijkðqk � qiÞ with ~wþijk P 0 and
X

k2VðiÞ

~wþijk 6 2:
Similarly, we find ~w�ijk satisfying
~Dq�ij ¼
X

k2VðiÞ

~w�ijkðqk � qiÞ with ~w�ijk P 0 and
X

k2VðiÞ

~w�ijk 6 2:
The numerical scheme (29) can now be recast as follows
qnþ1
i ¼ qi � Dt

X
k;j2VðiÞ

ðAþij wþijkðqi � qkÞ � Bþij ~wþijkðqk � qiÞÞ � Dt
X

k;j2VðiÞ
ðA�ij w�ijkðqi � qkÞ � B�ij ~w�ijkðqk � qiÞÞ; ð31Þ
which can be written as:
qnþ1
i ¼ ciiqi þ

X
k2VðiÞ

cikqk; ð32Þ
with:
cii ¼ 1� Dt
P

k;j2VðiÞ
Aþij wþijk þ Bþij ~wþijk þ A�ij w�ijk þ B�ij ~w�ijk
� �

;

cik ¼ Dt
P

j2VðiÞ
Aþij wþijk þ Bþij ~wþijk þ A�ij w�ijk þ B�ij ~w�ijk
� �

:

8>><
>>:
We obviously have
cii þ
X

k2VðiÞ
cik ¼ 1: ð33Þ
Moreover, if Dt is now chosen such that whatever i 2 [1, I],
Dt 6
X

k;j2VðiÞ
Aþij wþijk þ Bþij ~wþijk þ A�ij w�ijk þ B�ij ~w�ijk
� �0

@
1
A
�1

; ð34Þ
then we get:
0 6 cii 6 1 and 0 6 cik 6 1: ð35Þ
The scheme formulation (32) together with relations (33) and (35) on the coefficients leads to the local maximum preserving
property, since qnþ1

i is written as a convex combination of qi and qj; j 2 VðiÞ. Now, in order to recover (27), we just have to
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combine the fact that A
ij 6
jC
ij j
jCi j
kuki;1 and B
ij 6

jC
ij j
jCi j
kuki;1, associated to previous properties on the coefficients w
ijk and

~w
ijk. h
Remark 3. In the particular case of a constant velocity u associated to a uniform mesh like the one in Fig. 2 with hexagonal
control volumes ðCT h

¼ 2Þ and with the use of the minmod limiter (s = 1), the CFL condition (27) leads to:
Dt 6
9h

19ð
ffiffiffi
2
p
þ 2

ffiffiffi
5
p
Þkuk

	 h
12:4kuk ð36Þ
At first sight, (36) can appear as a very severe CFL restriction, but it is very similar to other CFL-conditions on unstructured
meshes used to ensure the maximum principle, see for instance [22,13]. Moreover, we must bear in mind that all the proofs
were established by considering sufficient conditions which always correspond to the worst case we could encounter. Con-
sequently, it is observed in numerical computations that very good results are obtained even with less restrictive CFL
numbers.
3.3. A variant of the numerical scheme

Instead of considering the dual mesh made of CV1 control volumes displayed in Fig. 1, we could build another dual mesh
using more simple ones, by joining the barycenters of all the triangles surrounding Ai leading to ‘‘CV2” control volumes (see
Fig. 3). In that case, we define Cij = [Bj�1Bj] as the interface between the nodes Ai and Aj, and we so have to reconstruct the
density value at the node Qij = [Bj�1Bj] \ [AiAj]. In general, Qij is no more the middle of [AiAj], except in the case of very par-
ticular structured meshes. There are clearly several advantages with this construction. In particular, the downstream slope
pdown

ij is now directly available without any linear interpolation process:
pdown
ij ¼

qj � qi

kAiAjk
;

even if the upstream gradient definition pup
ij always needs the value of the density at node Nij ¼ ðAiAj½\@Di by a linear inter-

polation reconstruction:
pup
ij ¼

qi � qNij

kAiNijk
Let us now introduce the mesh parameter
a ¼ min
16i6I;j2VðiÞ

kAiAjk
kAiQ ijk

:

We assume moreover that:
81 6 i; j 6 I; i–j; Q ij 2�Ai;Aj½; ð37Þ
Fig. 3. Construction of the dual mesh: control volume CV2 around the node Ai.
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so that 1 6 a 6 2, with the property that the more regular the mesh, the closer a to 2. Reproducing the arguments used with
the CV1 control volume, and assuming that the limiter verifies
8r 2 Rþ� ;WðrÞ 6 minðar; sÞ ð38Þ
instead of (23), the scheme can be proved to satisfy the local maximum property under the mesh assumption (37) and the
CFL:
Dt 6 min
16i6I

jCij
kuki;1 1þ sCT h

a

� �P
j2VðiÞjCijj

: ð39Þ
Clearly (39) is equivalent to (27) and even less restrictive in the case a P 12/7. Otherwise, it needs restrictions on the
mesh quality, expressed in condition (37). For this reason the CV1 control volume has theoretically to be preferred in the
case of fully unstructured meshes.

Remark 4. In the particular case mentioned in Remark 3, the CFL becomes
Dt 6
3h

4ð
ffiffiffi
2
p
þ 2

ffiffiffi
5
p
Þkuk

	 h
7:8kuk : ð40Þ
However there are also some drawbacks with the CV2 construction. Firstly, the node Qij does not stand in the middle of
[Bj�1Bj]. Consequently, the new density computation:
qnþ1
i ¼ qn

i �
Dt
jCij

X
j2VðiÞ
jCijjGijððqijÞ

n
; ðqjiÞ

nÞ; ð41Þ
where the right hand side of (41) is as previously evaluated using an upstream flux:
Gijðq1;q2Þ ¼
q1uij � nij if uij � nij P 0;
q2uij � nij if uij � nij < 0;

�
ð42Þ
does not correspond to a second-order accuracy numerical integration scheme. Secondly, we have to define the quantity uij,
corresponding to the discrete value of the velocity field at Qij. A possible determination of this quantity uses the reasoning
made for the CV1 case with a suitable interpolation of the values of uþij and u�ij , corresponding respectively to the discrete
values at nodes Aþij and A�ij (see Fig. 1). Anyway, we require to satisfy the consistency constraint
X

j2VðiÞ
jCijjGijðqc;qcÞ ¼ 0: ð43Þ
It leads to further computational costs, as well as a loss of accuracy in the discrete velocity field which can affect the glo-
bal scheme accuracy.

There is no theoretical difficulties in extending the construction of both CV1 and CV2 schemes to the three-dimensional
framework. The CV1 construction will be free of geometrical constraint, but in practice the implementation of the scheme
and the management of the complex geometry of the control volumes will be very involved. Again, the CV2 construction will
be simpler. Nevertheless, it will not be possible by using generic mesh generation to respect the geometrical constraint that
guarantees the maximum principle. However, ideas from [16,3] can be adapted to deal with the few ‘‘bad” control volumes.

In Section 4, the construction CV1 and CV2 will be tested to analyze and compare their behaviors, as well to confirm the
theoretical considerations.

4. Numerical results

In this section we present several numerical tests. We start by dealing with given velocity fields in order to discuss the
quality of the approximation. Then, we consider the incompressible Navier–Stokes system and we show the ability of the
scheme to deal with large density variation. The simulations are performed on unstructured meshes such as the one dis-
played in Fig. 4, possibly with refinement strategies (only in Sections 4.2.2 and 4.3, for which meshes are displayed
below).

Throughout this section the tiling of the domain is made by using usual conforming and isotropic unstructured meshes
composed of triangles, associated to either CV1 or CV2 control volumes, generated by the BAMG software [1], for which the
value of hmin has to be specified. It allows in particular to avoid triangles with too small angles and all the geometric con-
stants involved in the stability analysis remain controlled. For each mesh considered, the time step is fixed at
Dt = 0.2hmin/kuk1, with hmin the size of the smallest edge of the mesh (see in Table 1 the values of Dt when kuk1 = 1).
We first note that for all the following tests, this choice of CFL condition is sufficiently small to numerically ensure the max-
imum principle, even if it is far less restrictive than the one expected by the theory. Indeed, it is possible to chose a larger Dt
than the one given by (27) or (39) according to the control volumes type CV1 or CV2 used, while preserving the maximum
principle.



Fig. 4. Example of unstructured mesh used without any adaptive process: level 1.

Table 1
Time-step values with kuk1 = 1.

Mesh level hmin Dt

1 4.42E�02 8.84E�03
2 2.21E�02 4.42E�03
3 1.10E�02 2.21E�03
4 5.50E�03 1.10E�03
5 2.76E�03 5.52E�04
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For all the simulations presented below, we use the minmod limiter and, concerning time discretization, we actually
make use of a second-order in time scheme, based on a natural Runge–Kutta extension of the method discussed in the pre-
vious sections.

4.1. Translated field

The first numerical test consists in a convected profile on X = ] � 1,1[2, with a constant velocity field u = (k,k)T, where
k = 0.5. For the initial condition q(t = 0,x) = q0(x), two different functions are used. First, a regular function:
q0 ¼
0:5ð1þ cosð4prÞÞ if r 6 0:25;
0 otherwise;

�
ð44Þ
and then a discontinuous one:
q0 ¼
1 if r 6 0:25;
0 otherwise:

�

Setting r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ 0:25Þ2 þ ðx2 þ 0:25Þ2

q
, the initial solutions are centered at the point (�0.25,�0.25). The computations are

performed until the final time t = 1.
Tables 2 and 3 list the order of the errors in the L1(X) norm and in the L1(X) norm between the exact solution and the

approximation at the final time t = 1, computed respectively by:
X
Ai2T h

jCijjqi � qexactðAiÞj and max
Ai2T h

jqi � qexactðAiÞj:
When a regular function is used, the L1(X) rate of convergence is very good (namely Oðh1:77Þ for CV1 and CV2 control vol-
umes between the two most refined meshes), and seems to be better than in the cell-centered case [16]. Otherwise, a lower



Table 2
Translation of a regular function: order of the errors for various control cell and meshes.

Mesh level 1–2 2–3 3–4 4–5

L1 in CV1 1.62 1.52 1.69 1.77
L1 in CV2 1.65 1.60 1.76 1.77
L1 in CV1 0.848 1.17 1.20 1.21
L1 in CV2 0.878 1.20 1.20 1.22

Table 3
Translation of a discontinuous function: order of the errors for various control cell and meshes.

Mesh level 1–2 2–3 3–4 4–5

L1 in CV1 0.61 0.60 0.63 0.62
L1 in CV2 0.67 0.65 0.67 0.63
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rate of convergence is achieved when a discontinuous function translates, leading to similar results than those obtained in
[9,16].

Qualitatively, 10 equidistributed isovalues of the density between q = 0.01 and q = 0.8 are displayed at initial and final
times, for the regular density (Fig. 5) as well as for the discontinuous one (Fig. 6) on the mesh corresponding to mesh level
5 (see Table 1). Since control volumes type CV1 and CV2 give very similar results, only results obtained with CV1 volumes are
displayed. For the regular solution, the numerical diffusion is quite small, as expected with a second-order accuracy scheme.
For the discontinuous one, the radial symmetry is well preserved.

Finally, we consider a structured mesh like the one considered in Remarks 3 and 4, composed of 256 � 256 nodes. The
initialization is made with the discontinuous solution, and we are looking at the solution obtained after only one iteration
in time, according to the time-step value Dt which is no more equal to 0.2hmin/kuk1. We are particularly interested in the
largest value of Dt for which the maximum principle is still ensured. With the CV1 control volumes, this value is equal to
7.80E�03, compared to 8.3E�03 for the CV2 control volumes. On the one hand, it can be observed that these values are sig-
nificantly larger than the one given by the theory (respectively 3.1E�04 from (36) for CV1 and 5.0 E�04 from (40) for CV2).
On the other hand, it also shows that the use of the CV2 volume control leads to a slightly less restrictive CFL condition, as
expected by the theory.
4.2. Rotational field

4.2.1. Convergence rates
The second numerical test consists of a convected profile on X = ] � 1,1[2, with a stationary rotating velocity field u =

(�x2,x1)T. For the initial condition q0(x), the previous regular and discontinuous functions are used, using now

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ ðx2 þ 0:5Þ2
q

. In this case, the continuous as well as the discrete velocity fields verify the divergence free constraint
divxu = 0 and, consequently, the numerical scheme uses the consistency property (14) or (43) according to the finite control
volume used.

As above, Tables 4 and 5 list the order of the errors in the L1(X) norm (eventually in the L1(X) norm too) between the
exact solution and the approximation at the final time t = 1.50. We observe that the rate of convergence is nearly the same
using control volumes CV1 or CV2 for the regular function (around Oðh1:80Þ in the L1(X) norm between the two most refined
Fig. 5. Density contours of a regular function at t = 0 (left) and t = 1 (right).



Fig. 6. Density contours of a discontinuous function at t = 0 (left) and t = 1 (right).

Table 4
Rotation of a regular function: order of the errors for various control cell and meshes, t = 1.50.

Mesh level 1–2 2–3 3–4 4–5

L1 in CV1 1.36 1.62 1.52 1.78
L1 in CV2 1.47 1.71 1.67 1.82
L1 in CV1 0.89 1.15 1.20 1.26
L1 in CV2 1.00 1.27 1.19 1.26

Table 5
Rotation of a discontinuous function: order of the errors for various control cell and meshes, t = 1.50.

Mesh level 1–2 2–3 3–4 4–5

L1 in CV1 0.61 0.63 0.65 0.62
L1 in CV2 0.67 0.64 0.66 0.64
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meshes). Moreover, these convergence rates are as good as in the constant velocity field case. Concerning the discontinuous
function, results are once again similar for both control volumes.

Once again, 10 equidistributed isovalues of the density between q = 0.01 and q = 0.8 are displayed at initial and final
times in Fig. 7 (resp. Fig. 8) when a regular density (resp. a discontinuous density) is convected by the rotating velocity field.
The views of both control volumes CV1 and CV2 are very similar, then only the first one is displayed.

Remark 5. Let us note that according to the regularity of the initial datum and to the flux limiter function involved, these
results can still be a little bit improved. On the one hand, using the C1(X) profile q0 ¼ e�20r2

instead of (44) leads to a better
convergence rate in the L1(X) norm between the two last meshes, respectively 1.92 and 2.02 for the translated and rotational
Fig. 7. Density contours of a regular function at t = 0 (left) and t = 1.50 (right).



Fig. 8. Density contours of a discontinuous function at t = 0 (left) and t = 1.50 (right).
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fields. Nevertheless, the convergence rate in the L1(X) norm remains unchanged (around 1.25 for both cases). On the other
hand, using the modified Van-Leer flux limiter (24) instead of the classical minmod one slightly increases the convergence
rates, as theoretically expected (0.66 compared to 0.62 for the rotational case in the L1(X) norm).
Fig. 9. Mesh (top) and density contours (bottom) of a discontinuous function at t = 0, t = p/2, t = p and t = 2p with refinement strategy, CV1 control volumes.



C. Calgaro et al. / Journal of Computational Physics 229 (2010) 6027–6046 6043
4.2.2. Adaptive mesh refinement process
The last test about the rotational field is devoted to the use of the local refinement mesh strategy. It takes advantage of the

ability of the scheme in maintaining the local maximum property on fully unstructured meshes. This isotropic mesh-refine-
ment process is based on the BAMG software [1]. Practically, at each (Dt)mesh step with (Dt)mesh = 15Dt, the new adapted
mesh is built using the previous one as well as the value of the density. This is a very suitable way to detect the density dis-
continuity lines, and to indicate to the remeshing algorithm where the smallest triangles have to be located. Even if BAMG
allows anisotropic mesh generation with the use of the metric concept [26], only the isotropic one is used in the context of
this paper. Fig. 9 displays the mesh as well as the isovalues of the density for the discontinuous function at several times of
the simulation. Here the final time used is t = 2p. We obtain the same L1(X) error on the density than the one obtained in the
non-locally refined case by using only 8000 points in the mesh compared to 77,000 points.

4.3. Falling droplet

The goal of this test is to investigate the effectiveness of the proposed scheme by simulating variable density incompress-
ible flows, in the context of very high density ratio such as a water bubble falling in air. This benchmark is already described
in [11], but only with a moderate density ratio (namely 100) and a tensorial Cartesian mesh, for which the maximum prin-
ciple property is simply ensured by the use of a one-dimensional limiter. An unstructured mesh coupled to a local mesh
refinement strategy allows far less degrees of freedom for a better accuracy. The scheme is therefore an alternative to
Fig. 10. qM = 1000, hmin = 1/400, density contours = [200,350,400,450,500,550,600,650,800].
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Cartesian mesh flow solvers to simulate complex flows where the interfaces evolve in less predictable domains, as for
instance Rayleigh–Taylor instabilities. Very small triangles can then be concentrated in the close vicinity of the interface,
leading to a far smaller global number of degrees of freedom for a given accuracy. Here, a high density ratio is considered.
The use of the limiting process described above for the vertex-based finite volume scheme is absolutely essential to provide
physical as well as stable simulations. A heavy ‘‘droplet” falls through a light fluid and impacts the flat surface of the heavy
fluid in a cavity. The computational domain is (0,d) � (0,2d), where d = 1 and at t = 0 the fluid is at rest with density:
qðx; yÞ ¼
qM ¼ 1000 if 0 6 y 6 1 or 0 6 r 6 0:2;
qm ¼ 1 if 1 < y 6 2 or 0:2 < r;

�

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 1:75Þ2

q
. As in [40], the equations are made dimensionless by using the following references: qm

for density, d for length,
ffiffiffiffiffiffiffiffiffi
d=G

p
for time, so that the reference velocity is

ffiffiffiffiffiffi
dG
p

. In the dimensionless equations, the gravity

term is f = (0,�q) and the Reynolds number is defined by Re ¼ qmd3=2G1=2

l . In our test, the viscosity of the fluid is supposed
to be constant in the whole domain and we have Re = 3132. The difficulty obviously comes from the very strong discontinu-
ity at the interface. At initial time, the mesh is adapted to the initial condition using the BAMG mesh-refinement procedure
[1], associated to the density gradient in order to detect the zones that need to be locally refined. Then, during the simulation,
the time frequency of the remeshing process mainly depends on the quantity kuk1hmin, where juk1 is the L1(X) norm of the
discrete velocity field, and hmin the length of the smallest edge in the mesh. At each remeshing step, once the new mesh is
obtained, the old velocity field uold is not only linearly interpolated on the new mesh, leading to a new discrete field u*, but
also projected on the discrete divergence-free space in order to obtain the velocity field unew on the new mesh. This is a cru-
cial point to ensure (14), and so to make the finite volume scheme maximum principle preserving. Numerically, it consists in
Fig. 11. qM = 1000, hmin = 1/400, meshes.
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the minimization of jju� � unewjjL2ðXÞ under the constraint that unew is divergence-free from the finite element point of view. It
leads to the resolution of a classical saddle-point problem.

For this computation, we use the CV1 mesh and the smallest edge in the mesh is hmin = 1/400, so that the number of nodes
in the mesh evolves from 15,000 to 21,000 during the simulation. Several density isovalues are displayed in Fig. 10 and the
corresponding meshes in Fig. 11. The maximum principle is perfectly ensured, and results are very consistent with those of
[7,38,40] in slightly different contexts. Note also that these references make use of regular Cartesian grids. After the splash of
the droplet, some areas of lighter density contours appear within the heavy fluid, corresponding to a phenomenon for which
some particles of lighter fluid are trapped in the heavy fluid after the splash. The change of topology can be clearly distin-
guished since the two independent regions are merging. The formation of water waves resulting from the splash moving
toward the walls can also be remarked. We point out that both the computation and the mesh generation do not exploit
the natural symmetries of the problem. Accordingly, some small discrepancies indicating a loss of symmetry can appear,
in particular after the splash (see (f), (g), (h) in Fig. 10 and Fig. 11). It could be easily fixed by constructing ‘‘manually” a sym-
metric mesh. Let us note that a difficulty, compared to smaller density ratios, lies in the bad condition number of the linear
system (6) and (7) in the finite element step of the algorithm. This feature has to be taken into account in order to actually
ensure a discrete divergence-free velocity field, which is a fundamental assumption to provide the stability of the finite vol-
ume scheme. To obtain this satisfactory convergence process, the value of hmin has so to be chosen sufficiently small accord-
ing to the value of qM, and a suitable preconditioning strategy has to be used (we refer to [10] for progress in this direction).
5. Conclusion

In this paper, a L1-stable MUSCL vertex-based finite volume scheme is developed using a multi-dimensional slope limiter.
On the one hand, it is proved to preserve a local maximum principle property under a given Courant–Friedrichs–Levy con-
dition. On the other hand, the proof of the maximum principle is obtained for any discrete divergence-free velocity field, gen-
eralizing the constant velocity field case. According to the chosen control volume, two variants are derived. For the first one
(namely, the CV1 case), and by contrast to the cell-center finite volume case, the L1 stability can be obtained without any
geometry restriction on the mesh. The CV2 case we propose is simpler to implement and provides comparable results, but it
also implies more constraints on the mesh. Numerical tests on several classical benchmarks lead to very satisfactory conver-
gence rates. The proposed finite volume scheme is incorporated in a more complete code to simulate the evolution of var-
iable density flows with very high density ratios on unstructured meshes, combined to a local mesh refinement strategy.
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